Atmos. Chem. Phys. Discuss., 15, 807–851, 2015 www.atmos-chem-phys-discuss.net/15/807/2015/ doi:10.5194/acpd-15-807-2015 © Author(s) 2015. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Impacts of an unknown daytime nitrous acid source on its daytime concentration and budget, as well as those of hydroxyl, hydroperoxyl, and organic peroxy radicals, in the coastal regions of China

Y. Tang^{1,2}, J. An¹, F. Wang^{1,2,3}, Y. Li¹, Y. Qu¹, Y. Chen¹, and J. Lin^{1,2}

¹State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China

²University of the Chinese Academy of Sciences, Beijing 100049, China

³Anhui Meteorological Bureau, Hefei 230061, China

Received: 16 November 2014 - Accepted: 4 December 2014 - Published: 9 January 2015

Correspondence to: J. An (anjl@mail.iap.ac.cn)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

Many field experiments have found high nitrous acid (HONO) mixing ratios in both urban and rural areas during daytime, but these high daytime HONO mixing ratios cannot be explained well by gas-phase production, suggesting that an unknown daytime HONO source (P_{unknown}) could exist. The formula $P_{\text{unknown}} \approx 19.60 \times \text{NO}_2 \times J(\text{NO}_2)$ was obtained using observed data from 13 field experiments across the globe. The additional HONO sources (i.e. the Punknown, HONO emissions, and nighttime hydrolysis conversion of nitrogen dioxide (NO₂) on aerosols) were coupled into the WRF-Chem model (Weather Research and Forecasting model coupled with Chemistry) to assess the Punknown impacts on the concentrations and budgets of HONO and peroxy 10 (hydroxyl, hydroperoxyl, and organic peroxy) radicals (RO_x) (= OH + HO₂ + RO₂) in the coastal regions of China. Results indicated that the additional HONO sources produced a significant improvement in HONO and OH simulations, particularly in the daytime. Elevated daytime-mean Punknown values were found in the coastal regions of China, with a maximum of 2.5 ppb h^{-1} in the Beijing–Tianjin–Hebei region. The $P_{unknown}$ produced 15 a 60-250 % increase of OH, HO₂ and RO₂ near the ground in the major cities of the coastal regions of China, and a 5-48% increase of OH, HO₂ and RO₂ in the daytime meridional-mean mixing ratios within 1000 m above the ground. When the additional HONO sources were included, the photolysis of HONO was dominated in the OH pro-

- ²⁰ duction rate in Beijing, Shanghai and Guangzhou before 10:00 LST with a maximum of 10.01 [7.26 due to the $P_{unknown}$] ppb h⁻¹ in Beijing, whereas the reaction of HO₂ + NO (nitric oxide) was dominated after 10:00 LST with a maximum of 9.38 [7.23] ppb h⁻¹ in Beijing. The whole RO_x cycle was accelerated by the additional HONO sources, especially the $P_{unknown}$. The OH production rate was enhanced by 0.67 [0.64] to 4.32
- ²⁵ [3.86] ppb h⁻¹ via the reaction of HO₂ + NO, and by 0.85 [0.69] to 4.11 [3.61] ppb h⁻¹ via the photolysis of HONO, and the OH loss rate was enhanced by 0.58 [0.55] to 2.03 [1.92] ppb h⁻¹ via the reaction of OH + NO₂ and by 0.31 [0.28] to 1.78 [1.64] ppb h⁻¹ via the reaction of OH + CO (carbon monoxide) in Beijing, Shanghai and Guangzhou.

Similarly, the additional HONO sources produced an increase of 0.31 [0.28] to 1.78 [1.64] ppb h⁻¹ via the reaction of OH + CO and 0.10 [0.09] to 0.63 [0.59] ppb h⁻¹ via the reaction of CH_3O_2 (methylperoxy radical) + NO in the HO₂ production rate, and 0.67 [0.61] to 4.32 [4.27] ppb h⁻¹ via the reaction of HO₂ + NO in the HO₂ loss rate in Beijing, Shanghai and Guangzhou. The above results suggest that the $P_{unknown}$ considerably enhanced the RO_x concentrations and accelerated RO_x cycles in the coastal regions of China, and could produce significant increases in concentrations of inorganic aerosols and secondary organic aerosols and further aggravate haze events in

10 **1 Introduction**

these regions.

The hydroxyl radical (OH) is the dominant oxidant in the troposphere, initiating daytime photochemistry, removing the majority of reactive gases, and leading to the formation of secondary products (e.g. ozone (O₃), peroxyacyl nitrates (PANs) and aerosols) that can affect air quality, climate, and human health (Stone et al., 2012). OH is formed primarily through the photolysis of O_3 , nitrous acid (HONO), hydrogen peroxide (H₂O₂) 15 and the reactions of O₃ with alkenes (Platt et al., 1980; Crutzen and Zimmermann, 1991: Atkinson and Aschmann, 1993; Fried et al., 1997; Paulson et al., 1997). Recent field experiments have found the contribution of the photolysis of HONO to daytime OH production can reach up to 56, 42, and 33% in urban, rural and forest areas, respectively (Ren et al., 2003; Kleffmann et al., 2005; Acker et al., 2006), more than 20 that of the photolysis of O₃. However, most current air quality models fail to predict observed HONO concentrations, underestimating daytime HONO in particular (Czader et al., 2012; Gonçalves et al., 2012; Li et al., 2011), due to the incomplete knowledge of HONO sources.

²⁵ It is generally accepted that the photolysis of HONO (Reaction R2) in the early morning could be a major source of OH. After sunrise, HONO mixing ratios are usually below the detection limit due to the strong photolysis of HONO. However, many field experi-

ments have found daytime HONO mixing ratios that are unexpectedly higher than the theoretical steady value (~ 10 ppt), in both urban and rural areas: e.g. 0.15–1.50 ppb higher in Asia (Su et al., 2008; Wu et al.,2013; Spataro et al., 2013), 0.01–0.43 ppb higher in Europe (Kleffmann et al., 2005; Acker et al., 2007; Sörgel et al., 2011; Mi⁵ choud et al., 2014), 0.02–0.81 ppb higher in North America (Zhou et al., 2002a, b; Ren et al., 2010; Villena et al., 2011; Zhang et al., 2012b; Wong et al., 2012; Vander-Boer et al., 2013), 2.00 ppb higher (maximum) in South America (Elshorbany et al., 2009), and 0.015–0.02 ppb higher in Antarctica (Kerbrat et al., 2012) (Fig. 1). These high HONO mixing ratios, particularly in the daytime, cannot be explained well by gas-

¹⁰ phase production (Reaction R1), suggesting that an unknown daytime HONO source $(P_{unknown})$ could exist.

 $OH + NO \rightarrow HONO$ $HONO + h\nu \rightarrow OH + NO$ $HONO + OH \rightarrow NO_2 + H_2O$

¹⁵ The P_{unknown} was calculated by Su et al. (2008) at Xinken (Guangzhou, China), with a maximum of 4.90 ppb h⁻¹. Spataro et al. (2013) proposed a P_{unknown} value of 2.58 ppb h⁻¹ in Beijing. In fact, P_{unknown} values, ranging from 0.06 to 4.90 ppb h⁻¹ have been obtained from many field studies across the globe, as shown in Fig. 1, suggesting P_{unknown} could contribute greatly to the daytime production of OH and hydroperoxyl radical (HO₂).

The most important formation pathway for nocturnal HONO could be the hydrolysis reaction of nitrogen dioxide (NO_2) on humid surfaces (Reaction R4) (Kleffmann et al., 1999; Alicke et al., 2002; Finlayson-Pitts et al., 2003):

 $2NO_2 + H_2O \rightarrow HONO + HNO_3$

²⁵ Ammann et al. (1998) found HONO formation via the heterogeneous reduction of NO₂ on the surface of soot (Reaction R5), and Reaction (R5) can be enhanced by irradiation

(R1)

(R2)

(R3)

(R4)

(Monge et al., 2010):

 $NO_2 + red_{ads} \rightarrow HONO + ox_{ads}$

George et al. (2005) and Stemmler et al. (2006, 2007) showed the heterogeneous reduction of NO_2 on organic surfaces (Reaction R6) (e.g. humic acid) to produce HONO:

 ${}^{\circ} \text{ NO}_2 + \text{HC}_{\text{red}} \rightarrow \text{HONO} + \text{HC}_{\text{ox}}$

Li et al. (2008) proposed a homogeneous reaction of photolytically excited NO₂ with H₂O (Reaction R7), but this reaction has been proven to be unimportant in the real atmosphere (Carr et al., 2009; Wong et al., 2011; Amedro et al., 2011). Zhang and Tao (2010) suggested the homogeneous nucleation of NO₂, H₂O and ammonia (NH₃) for the production of HONO (Reaction R8), but Reaction (R8) has not yet been tested in laboratory studies, nor observed in field experiments:

 $NO_{2} + hv(\lambda > 420 \text{ nm}) \rightarrow NO_{2}^{*}$ $NO_{2}^{*} + H_{2}O \rightarrow HONO + OH$ $NO_{2}^{*} + M \rightarrow NO_{2} + M$

¹⁵
$$2NO_2 + H_2O(g) + NH_3 \rightarrow HONO + NH_4NO_3(s)$$

Zhou et al. (2002b, 2003, 2011) demonstrated that the photolysis of adsorbed nitric acid (HNO₃) and nitrate (NO₃⁻) at ultraviolet wavelengths (~ 300 nm) (Reaction R9) can produce HONO:

$$HNO_3/NO_3^- + h\upsilon \to HONO/NO_2^- + O$$
(R9)

²⁰ Additionally, HONO could be emitted from soils (Su et al., 2011; Oswald et al., 2013), and may be important in farmland and forest areas.

Based on these mechanisms outlined above, some modeling studies have been carried out to simulate HONO concentrations (e.g. An et al., 2011; Czader et al., 2012;

(R5)

(R6)

(R7)

(R8)

Gonçalves et al., 2012). Sarwar et al. (2008) incorporated Reactions (R4), (R9) and HONO emissions into the Community Multiscale Air Quality (CMAQ) model, but still underestimated HONO mixing ratios during daytime. Li et al. (2010) considered both aerosol and ground surface reactions, and HONO emissions in the WRF-Chem model

- ⁵ (Weather Research and Forecasting model coupled with Chemistry), and found that HONO simulations were significantly improved. However, Li et al. (2010) used a relatively high emission ratio of 2.3 % for HONO / NO₂ to compute the direct emissions of HONO, which could have overestimated the HONO concentrations in the air (An et al., 2013). Czader et al. (2012) added Reactions (R6), (R7) and HONO emissions
- into the CMAQ model. The HONO simulations matched well with observations at night, but were significantly lower than observations at noon. Wong et al. (2013) reported good agreement between simulated and observed daytime HONO when HONO emissions, photolytically enhanced daytime formation mechanisms on both aerosols and the ground, and Reaction (R7) were included. However, according to our recent studies
- (Tang et al., 2014), this result depended heavily on the selection of uptake coefficients of NO₂ heterogeneous chemistry. Overall, the topic of HONO sources remains under discussion today, and so it is a challenge for modelers to decide which mechanism(s) to be coupled into an air quality model.

To investigate the importance of the mechanisms described above, correlation tests between the $P_{unknown}$ and NO₂, HNO₃, irradiation or the photolysis frequency of NO₂ [J(NO₂)] were conducted in field experiments (Acker et al., 2007; Sörgel et al., 2011; Villena et al., 2011; Wong et al., 2012). Many of these studies demonstrated that there is a clear dependency of the $P_{unknown}$ on irradiation/J(NO₂) during daytime, particularly at noon. Rohrer et al. (2005) proposed that the photolytic HONO source at the surface of the chamber strongly depended on light intensity. Acker et al. (2007) summarized field experiments in several European countries and showed a strong correlation ($R^2 = 0.81$) between the $P_{unknown}$ and J(NO₂). Wong et al. (2012) also indicated that the $P_{unknown}$ showed a clear symmetrical diurnal variation with a maximum around

noontime, closely correlated with actinic flux (NO₂ photolysis frequency) and solar irradiance; the correlation coefficient was over 0.70.

Besides irradiation/J(NO₂), good correlations between the $P_{unknown}$ and NO₂ mixing ratios have been found from both field and laboratory studies, supporting the viewpoint that NO₂ is the primary precursor of HONO. Through estimating the $P_{unknown}$, Acker et al. (2007) speculated that the daytime HONO levels might be explained by a fast electron transfer onto adsorbed NO₂. Sörgel et al. (2011) indicated that the conversion of NO₂ most likely accounted for light-induced HONO formation, about an order of magnitude stronger than HONO formation during nighttime. High correlations between the $P_{unknown}$ and NO₂ mixing ratios have also been found (e.g. $R^2 = 0.77$ in Qin et al. (2006), $R^2 = 0.80$ in Villena et al. (2011), and $R^2 = 0.62$ in Elshorbany et al., 2009), indicating that the photosensitized conversion of NO₂ is more likely to be the daytime HONO source. This is the reason why some researchers have adopted the HONO / NO₂ ratio as a HONO emission factor to assess its implications (Elshorbany et al., 2012).

¹⁵ Based on the studies introduced above, the $P_{unknown}$ calculated from field experiments may be a practical method to help quantify the daytime HONO source. In this study, field experiment data from 13 different field campaigns across the globe were used to express the $P_{unknown}$ as a function of NO₂ mixing ratios and J(NO₂) (see Sect. 2.2). We then added the $P_{unknown}$ into the WRF-Chem model to assess the impacts of the $P_{unknown}$ on the concentrations and production and loss rates of HONO, OH, HO₂, and organic peroxy radical (RO₂).

2 Data and methods

2.1 Observed data

Observed air temperature (TA), relative humidity (RH), wind speed (WS) and direction (WD) near the ground were obtained from the National Climatic Data Center, China Meteorological Administration (Zhang et al., 2012a). Surface concentrations of O₃ and

NO₂ in Beijing were obtained from the Beijing Atmospheric Environmental Monitoring Action carried out by the Chinese Academy of Sciences (Li et al., 2011; Wang et al., 2014), except those in Guangzhou, which were sourced from Qin et al. (2009). HONO observations were conducted using an annular denuder at the campus of Peking University (PKU) (39°59' N, 116°18' E) in Beijing on 17–20 August 2007 (Spataro et al., 2013) and a long path absorption photometer at the Backgarden (BG) supersite (23°30' N, 113°10' E), about 60 km northwest of Guangzhou on 3–31 July 2006 (X. Li et al., 2012). The measurement systems are described in detail in Spataro et al. (2013) and X. Li et al. (2012). OH and HO₂ were measured by laser induced fluorescence at the BG supersite on 3–30 July 2006 (Lu et al., 2012).

2.2 Parameterization of HONO sources

Besides HONO gas-phase production from Reaction (R1), three additional HONO sources (HONO emissions, Reaction (R4) (nighttime), and the $P_{unknown}$) were coupled into the WRF-Chem model in this work.

- ¹⁵ HONO emissions were calculated using $[0.023 \times f_{\text{DV}} + 0.008 \times (1 f_{\text{DV}})] \times f_{\text{TS}}$, where f_{DV} denotes the nitrogen oxides (NO_x) emission ratio of diesel vehicles to total vehicles, and f_{TS} is the NO_x emission ratio of the traffic source to all anthropogenic sources (Li et al., 2011; An et al., 2013; Tang et al., 2014). Reaction (R4) was inserted into the Carbon-Bond Mechanism Z (CBM-Z) during nighttime only. The heterogeneous reac-
- ²⁰ tion rate was parameterized by $k = \left(\frac{a}{D_g} + \frac{4}{v\gamma}\right)^{-1}A_s$ (Jacob, 2000), where *a* is the radius of aerosols, *v* is the mean molecular speed of NO₂, D_g is a gas-phase molecular diffusion coefficient taken as $10^{-5} \text{ m}^2 \text{ s}^{-1}$ (Dentener and Crutzen, 1993), and A_s is the aerosol surface area per unit volume of air, calculated from aerosol mass concentrations and number density in each bin set by the Model for Simulating Aerosol Inter-²⁵ actions and Chemistry (MOSAIC). Hygroscopic growth of aerosols was considered (Li et al., 2011).

Previous studies have shown $P_{unknown} \propto NO_2 \cdot J(NO_2)$. To quantify the relationship between the $P_{unknown}$ and NO₂ mixing ratios and irradiation, daytime $P_{unknown}$, NO₂ mixing ratios and J(NO₂), based on all the available data sets from 13 different field campaigns across the globe, were plotted in Fig. 2. As expected, good correlation ($R^2 = 0.75$) between the $P_{unknown}$ and NO₂ mixing ratios was obtained (Fig. 2a). Furthermore, the correlation between the $P_{unknown}$ and NO₂ \cdot J(NO₂) was increased to 0.80, with a linear regression slope of 19.60 (Fig. 2b), so the $P_{unknown}$ cloud be expressed as a function of NO₂ mixing ratios and J(NO₂), i.e., $P_{unknown} \approx 19.60 \times NO_2 \times J(NO_2)$. This formula is very similar to $P_{unknown} \approx \alpha \times J(NO_2) \times NO_2 \times H_2O \times (S/V_g + S/V_a)$ proposed by Su et al. (2008), and $P_{unknown} \approx 3.3 \times 10^{-8} \times NO_2 \times Q_s$ suggested by Wong et al. (2012) as an additional daytime source of HONO through analysis of observed data, where S/V_a is the aerosol surface area-to-volume ratio, S/V_g is the ground surface area-to-volume ratio, α is a fitting parameter, and Q_s is solar visible irradiance.

2.3 Model setup

- ¹⁵ Used in this study was the WRF-Chem model version 3.2.1 (Grell et al., 2005; Fast et al., 2006), with the CBM-Z (Zaveri and Peters, 1999) and the MOSAIC (Zaveri et al., 2008). The detailed physical and chemical schemes for the simulations can be found in Tang et al. (2014). Two domains with a horizontal resolution of 27 km were employed in this study: domain 1 covered East Asia, whereas domain 2 covered the coastal
 ²⁰ regions of China, including the Beijing–Tianjin–Hebei region (BTH), the Yangtze River delta (YRD), and the Pearl River delta (PRD) (Fig. 3). There were 28 vertical model layers from the ground to 50 hPa, and the first model layer was ~ 28 m above the ground. Meteorological initial and boundary conditions were obtained from the National Centers for Environmental Prediction (NCEP) 1°×1° reanalysis dataset. Chemical initial and boundary conditions were constrained with the output of the Model for Ozone and
- Related chemical Tracers, version 4 (MOZART-4) (Emmons et al., 2010) every 6 h.

Monthly anthropogenic emissions in 2006/2007 and biogenic emissions were the same as those used by Li et al. (2011) and An et al. (2013).

Six simulations (cases *R*, R_{wop} , and R_p performed for the entire months of August 2007 and July 2006) with a spin-up period of seven days were conducted in this study to assess the $P_{unknown}$ effects on the concentrations and budgets of HONO, OH, HO₂, and RO₂. Case *R* only considered Reaction (R1) as a reference; Case R_{wop} included case *R* with HONO emissions, and Reaction (R4) only at night; case R_p contained case R_{wop} with the $P_{unknown}[\approx 19.60 \times NO_2 \times J(NO_2)]$. The $P_{unknown}$ and Reaction (R4) were added to the CBM-Z, and diagnostic variables (i.e. production and loss rates of HONO, OH, HO₂, OH, HO₂, RO₂, O₃, and other species) were inserted into the CBM-Z to quantify the $P_{unknown}$ impacts on the budgets of HONO, OH, HO₂, and RO₂ (Wang et al., 2014).

3 Results and discussion

3.1 Comparison of simulations and observations

Simulations of TA, RH, WS and WD were compared with observations, as shown in Wang et al. (2014). The statistical metrics, i.e. mean bias (MB), mean error (ME), 15 root-mean-square error (RMSE), normalized mean bias (NMB), normalized mean error (NME), index of agreement (IOA), and correlation coefficient (CC), were comparable with those of Wang et al. (2010) and L. Li et al. (2012) using the fifth-generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5) and Zhang et al. (2012a) using the WRF model. For O₃ in Beijing of 20 the BTH region and Guangzhou of the PRD region, the NMB, NME and IOA were -22.80%, 58.70% and 0.79, respectively (Table 1 for case R), comparable to the values of 30.2% for NMB, 55.8% for NME and 0.91 for IOA reported in L. Li et al. (2012) using the CMAQ model. When HONO emissions, Reaction (R4) and the Punknown were included, the NMB, NME and IOA increased to -2.20%, 66.10% and 0.80, respec-25 tively (Table 1 for case R_p). The NO₂ fluctuations were generally captured (Fig. 4) but

the simulated amplitude of NO₂ was underestimated in some cases (Fig. 4). This underestimation could be related with the uncertainty of NO_x emissions. For case *R*, the NMB, NME and IOA for NO₂ were -13.50%, 42.10% and 0.57, respectively (Table 1), similar to the results of Wang et al. (2010) using the CMAQ model (NMB of -33.0%, NME of 50.0% and 10A of 0.01). Compared with case *R* NO₂ simulations were further

⁵ NME of 50.0 %, and IOA of 0.61). Compared with case R, NO₂ simulations were further underestimated for case R_p (Table 1 for case R_p) due to the underestimation of NO_x emissions in Guangzhou.

HONO simulations with the gas-phase production only (case R) were always substantially underestimated compared with observations (Fig. 5), similar to the results

- ¹⁰ of Sarwar et al. (2008), Li et al. (2011) and An et al. (2013). When HONO emissions and Reaction (R4) were included, HONO simulations were significantly improved, especially at night (Fig. 5 and Table 2 for case R_{wop}). For Beijing, the nighttime RMSE and NME were reduced by 0.90×10^6 molecules cm⁻³ and 44.70%, whereas the NMB and IOA were increased by 50.00% and 0.29, respectively (Table 2). For Guangzhou, the
- ¹⁵ nighttime RMSE and NME were reduced by 0.44×10^6 molecules cm⁻³ and 32.90 %, and the NMB and IOA were enhanced by 58.80 % and 0.18, respectively. When the P_{unknown} was included, daytime HONO simulations were considerably improved (Fig. 5 and Table 2 for case R_p). Compared with case R_{wop} , the daytime NME in Beijing was reduced by 19.60 %, and the NMB and IOA in Beijing were increased to -24.30 from -62.00 % and 0.73 from 0.64, respectively (Table 2); the daytime NME in Guangzhou was reduced by 8.10 %, and the NMB in Guangzhou was increased to -61.20 from
 - -76.50 % (Table 2).

Simulated diurnal variations of OH and HO_2 showed consistent patterns with the observed data (Fig. 6). When HONO emissions and Reaction (R4) were considered

²⁵ (case R_{wop}), OH and HO₂ enhancements were minor in most cases compared with case *R* (Fig. 6 and Table 3), but the $P_{unknown}$ led to noticeable improvements in OH simulations on 5–12 July 2006 (Fig. 6). Substantial overestimation of OH mixing ratios on 20–25 July 2006 (Fig. 6) needs further investigation. Compared with case *R*, the NME was reduced by 79.60 %, whereas the NMB was increased by 105.40 %, and the

IOA was improved to 0.84 from 0.79 (Table 3). When the P_{unknown} was considered, HO₂ simulations were substantially improved (Fig. 6), the IOA was improved to 0.61 from 0.54 and the CC was improved to 0.66 from 0.57 (Table 3). However, HO₂ simulations were still substantially underestimated (Fig. 6). One of the major reasons for the HO₂
 ⁵ underestimation could be related to the considerable underestimation of anthropogenic volatile organic compounds (VOCs) (Wang et al., 2014).

3.2 Punknown simulations and its impacts on production and loss rates of HONO

High $P_{unknown}$ values were found in the coastal regions of China (Fig. 7), especially in the BTH, YRD and PRD regions due to elevated emissions of NO_x (Zhang et al., 2009).

For the BTH region, the largest daytime-mean P_{unknown} values reached 2.5 ppbh⁻¹ in Tianjin (Fig. 7a). Elevated daytime-mean P_{unknown} values were found in the YRD region, with a maximum of 2.0 ppbh⁻¹ in Shanghai (Fig. 7b). Daytime-mean P_{unknown} values reached 1.2 ppbh⁻¹ in Guangzhou and Shenzhen of the PRD (Fig. 7c). The simulated P_{unknown} values in the PRD region were lower than those in the BTH and YRD regions.
 One major reason is the underestimation of daytime NO₂ mixing ratios in the PRD (Fig. 4b).

For case *R*, daytime HONO production was primarily from the reaction of OH and nitric oxide (NO) (Reaction R1), with a maximum production rate of 0.69 ppb h⁻¹ in Beijing, 1.20 ppb h⁻¹ in Shanghai, and 0.72 ppb h⁻¹ in Guangzhou near noon due to high OH mixing ratios (Fig. 8a, c, e). The loss rate of HONO was 0.62 ppb h⁻¹ in Beijing, 1.09 ppb h⁻¹ in Shanghai, and 0.65 ppb h⁻¹ in Guangzhou via Reaction (R2), much higher than the 0.01–0.02 ppb h⁻¹ in Beijing, Shanghai and Guangzhou via Reaction (R3) (Fig. 8b, d, f), indicating that Reaction (R2) accounted for approximately 99% of the total loss rate of HONO.

²⁵ When the additional HONO sources (HONO emissions, Reaction (R4), and the P_{unknown}) were coupled into the WRF-Chem model, nighttime HONO was formed mainly via Reaction (R4) (0.30–1.42 ppb h⁻¹ in Beijing, 0.20–0.45 ppb h⁻¹ in Shanghai, and

0.25–0.84 ppb h⁻¹ in Guangzhou) (Fig. 8a, c, e). HONO emissions contributed 0.04– 0.62 ppb h⁻¹ to HONO production (Fig. 8a, c, e). Simulated $P_{unknown}$ values ranged from 0.42 to 2.98 ppb h^{-1} in Beijing, from 0.18 to 2.58 ppb h^{-1} in Shanghai, and from 0.06 to 1.66 ppb h⁻¹ in Guangzhou (Fig. 8a, c, e). The simulated $P_{unknown}$ values in Beijing (Fig. 8a) were in good agreement with the results of Spataro et al. (2013), with an av-5 erage unknown daytime HONO production rate of 2.58 ppb h⁻¹ in the studied summer period. However, the simulated Punknown values in Guangzhou (Fig. 8e) were lower than the 2.36–4.90 ppb h^{-1} reported by Su et al. (2008), due mainly to the underestimation of the daytime NO₂ mixing ratios in the PRD region. The additional HONO sources produce more HONO, which subsequently photolyzes to yield more OH. Therefore, the 10 formation of HONO through Reaction (R1) was greatly enhanced, with a maximum of 4.70 [1.44 due to the P_{unknown}] ppb h⁻¹ in Beijing, 4.25 [3.13] ppb h⁻¹ in Shanghai, and 1.58 [0.40] ppb h⁻¹ in Guangzhou in the morning (Fig. 8a, c, e), much higher than the 0.69 ppb h^{-1} in Beijing, 1.20 ppb h^{-1} in Shanghai, and 0.72 ppb h^{-1} in Guangzhou, respectively, for case R (Fig. 8a, c, e). Meanwhile, the loss rate of HONO via Reaction (R2) was significantly enhanced, with a maximum enhancement of 5.20 (= 5.82 - 0.62) $[1.97 \text{ due to the } P_{\text{unknown}}] \text{ ppb h}^{-1}$ in Beijing, 4.31 (= 5.40–1.09) $[1.44] \text{ ppb h}^{-1}$ in Shanghai, and 1.96 (= 2.61 - 0.65) [1.18] ppb h⁻¹ in Guangzhou (Fig. 8b, d, f). The HONO loss rate via dry deposition ranged from 0.28 to 0.45 ppb h^{-1} (not shown), roughly equivalent to the contribution of HONO emissions, suggesting that dry deposition of HONO 20 cannot be neglected in high NO_x emission areas.

3.3 Punknown impacts on concentrations of OH, HO₂ and RO₂

25

Incorporation of the P_{unknown} into the WRF-Chem model led to substantial enhancements in the daytime-mean mixing ratios of OH in the coastal regions of China, e.g. 60–190% in the BTH region, 60–210% in the YRD region, and 60–200% in the PRD region (Fig. 9a). The maximum enhancement of HO₂ reached 250% in the BTH region, 200% in the YRD region, and 140% in the PRD region (Fig. 9b). Similarly, a maxi-

mum increase of 180, 150 and 80 % in RO_2 [= CH_3O_2 (methylperoxy radical) + ETHP (ethylperoxy radical) + C_2O_3 (peroxyacyl radical) + others] were found in the BTH, YRD and PRD regions, respectively (Fig. 9c).

Vertically, the P_{unknown} enhanced the monthly meridional-mean daytime (06:00– 18:00 LST) mixing ratios of OH, HO₂ and RO₂ by 5–38, 5–47 and 5–48 %, respectively, within 1000 m above the ground in the coastal regions of China (Fig. 10). The vertical enhancements of OH, HO₂ and RO₂ at the same latitude were roughly uniform within the 1000 m (Fig. 10) due to strong vertical mixing in the daytime. Different P_{unknown} distributions led to distinct differences in the enhancements of OH, HO₂ and RO₂, with a maximum located near 35° N (Fig. 10).

3.4 P_{unknown} impacts on the budgets of OH, HO₂ and RO₂

OH radicals are produced mainly through the photolysis of HONO and O_3 , the reactions between O_3 and alkenes, and the reaction of $HO_2 + NO$ (Fig. 11). For case R, the predominant contribution to P(OH) [production rate of OH] was the reaction of $HO_2 + NO$, with a diurnal peak of 4.04 ppb h⁻¹ in Beijing, 1.52 ppb h⁻¹ in Shanghai, and 15 3.91 ppb h⁻¹ in Guangzhou at noon (Fig. S1a, c, e in the Supplement). The photolysis of HONO and O_3 were the second and third most important sources of OH. The former was dominant $(1.09 \text{ ppb h}^{-1} \text{ in Beijing}, 0.65 \text{ ppb h}^{-1} \text{ in Shanghai, and } 0.71 \text{ ppb h}^{-1} \text{ in }$ Guangzhou) mainly in the morning, while the latter was dominant (0.91 ppb h⁻¹ in Beijing, 0.52 ppb h⁻¹ in Shanghai, and 1.20 ppb h⁻¹ in Guangzhou) at noon (Fig. S1a, c, e). 20 Compared with the three OH sources above, the contributions of the reactions of O_{3+} alkenes and others were small, lower than 0.15 ppb h^{-1} (Fig. S1a, c, e). When the additional HONO sources were added, the photolysis of HONO became the most important source of OH in Beijing and Guangzhou before 10:00 LST, and in Shanghai before 12:00 LST; the diurnal peaks were 10.01 [7.26 due to the $P_{unknown}$] ppb h⁻¹ in Beijing 25 at 09:00 LST, 2.63 [1.92] ppb h^{-1} in Shanghai at 11:00 LST, and 2.60 [2.07] ppb h^{-1}

in Guangzhou at 09:00 LST (Fig. 11a, c, e), which were higher than or comparable

to the $3.10 \text{ ppb} \text{h}^{-1}$ reported by Elshorbany et al. (2009). Another important source was the reaction of HO₂+ NO, with a diurnal maximum conversion rate reaching 9.38 [7.23] ppb h⁻¹ in Beijing, 2.63 [1.15] ppb h⁻¹ in Shanghai, and 4.88 [1.43] ppb h⁻¹ in Guangzhou near noon (Fig. 11a, c, e). The contributions of the photolysis of O₃, the reactions of O₃ + alkenes and others to P(OH) showed minor changes in comparison with case *R* (Figs. 11a, c, e and S1a, c, e). Kanaya et al. (2009), who also conducted similar studies at Mount Tai (located in a rural area) of China, suggested that the reaction of HO₂+ NO was the predominant OH source, with a daytime average of 3.72 ppb h⁻¹, more than the 1.38 ppb h⁻¹ of the photolysis of O₃. Hens et al. (2014) reported similar

results in a boreal forest, in which the dominant contributor to OH was the reaction of HO_2 + NO, ranging from 0.23 to 1.02 ppb h⁻¹ during daytime. The production rates of OH in our study were higher than in Kanaya et al. (2009) and Hens et al. (2014) due to higher NO_x emissions in urban areas than in rural areas.

The dominant loss rate of OH was the reaction of $OH + NO_2$ for both cases R and

- ¹⁵ R_p (Figs. 11b, d, f and S1b, d, f). The diurnal maximum loss rates were 1.98 ppb h⁻¹ in Beijing, 1.12 ppb h⁻¹ in Shanghai, and 1.70 ppb h⁻¹ in Guangzhou for case *R* (Fig. S1b, d, f), whereas these values were 5.61 [4.38 due to the P_{unknown}] ppb h⁻¹ in Beijing, 2.00 [1.00] ppb h⁻¹ in Shanghai, and 2.65 [1.02] ppb h⁻¹ in Guangzhou for case R_p (Fig. 11b, d, f). The reactions of OH + VOCs to form HO₂ and RO₂ were the second most important loss path of OH, with a diurnal maximum of 0.75–1.73 ppb h⁻¹ for case *R* (Fig. S1b, d, f) and 1.57 [0.82 due to the P_{unknown}] to 5.37 [4.05] ppb h⁻¹ for case R_p in Beijing, Shanghai and Guangzhou (Fig. 11b, d, f). The third most important OH loss path was the reaction of OH + CO to form HO₂; the diurnal maximum rates were
- 0.46–1.47 ppb h⁻¹ for case *R* (Fig. S1b, d, f) and 0.93 [0.49 due to the $P_{unknown}$] to 3.58 [2.86] ppb h⁻¹ for case R_n in Beijing, Shanghai and Guangzhou (Fig. 11b, d, f).

The averaged radical conversion rates in the daytime (06:00–18:00 LST) are illustrated in Fig. 12. OH radicals are produced mainly via the photolysis of O_3 , HONO and hydrogen peroxide (H_2O_2), and the reactions between O_3 and alkenes, after which OH

radicals enter the RO_x (= OH + HO₂ + RO₂) cycle (Fig. 12 and Tables 4, S1 and S2 in the Supplement). In the cycle, the transfer among OH, HO₂ and RO₂ radicals oxidizes VOCs and converts NO to NO₂, accomplishing major oxidation processes. The OH, HO₂ and RO₂ radicals are eliminated by the termination reactions, ultimately leading to the formation and deposition of reservoir species (e.g. HNO₃, organic acid, PANs, and H₂O₂).

For case *R*, the reaction of $HO_2 + NO$ was the major source of OH [2.78 ppb h⁻¹ (68.61 % of the total production rate of OH) in Beijing, 0.73 ppb h⁻¹ (51.49 %) in Shanghai, and 1.75 ppb h⁻¹ (65.01 %) in Guangzhou] (Fig. 12a and Table 4). The second and third largest sources of OH were the photolysis of HONO [0.65 ppb h⁻¹ (16.05 %) in Beijing, 0.33 ppb h⁻¹ (23.26 %) in Shanghai, and 0.25 ppb h⁻¹ (9.12 %) in Guangzhou] and the photolysis of O₃ [0.47 ppb h⁻¹ (11.48 %) in Beijing, 0.31 ppb h⁻¹ (21.62 %) in Shanghai, and 0.62 ppb h⁻¹ (22.96 %) in Guangzhou] (Table 4). OH radicals were removed mainly through the reaction of OH + NO₂ [1.12 ppb h⁻¹ (39.31 % of the to-

- ¹⁵ tal loss rate of OH) in Beijing, 0.47 ppb h⁻¹ (46.63%) in Shanghai, and 0.77 ppb h⁻¹ (38.33%) in Guangzhou] (Table 4), whereas those were converted to HO₂ mainly via the reaction of OH + CO [0.79 ppb h⁻¹ (27.65%) in Beijing, 0.20 ppb h⁻¹ (19.97%) in Shanghai, and 0.58 ppb h⁻¹ (28.67%) in Guangzhou] (Table 4). The total conversion rate of OH to HO₂ was 0.40–1.35 ppb h⁻¹, and that of OH to RO₂ was 0.21–
- ²⁰ 0.69 ppb h^{-1} in Beijing, Shanghai and Guangzhou (Fig. 12a). For HO₂, the predominant production pathways were the reactions of OH + CO [0.79 ppb h⁻¹ (33.42 %) in Beijing, 0.20 ppb h⁻¹ (28.27 %) in Shanghai, and 0.58 ppb h⁻¹ (38.26 %) in Guangzhou] and CH₃O₂ + NO [0.54 ppb h⁻¹ (23.12 %) in Beijing, 0.16 ppb h⁻¹ (22.53 %) in Shanghai, and 0.33 ppb h⁻¹ (21.75 %) in Guangzhou] and the photolysis of formaldehyde (HCHO) [0.24 ppb h⁻¹ (10.34 %) in Beijing, 0.09 ppb h⁻¹ (11.97 %) in Shanghai, and 0.11 ppb h⁻¹ (7.42 %) in Guangzhou] (Table S1). HO₂ radicals were consumed primarily via the reaction of HO₂ + NO [2.78 ppb h⁻¹ (99.34 %) in Beijing, 0.73 ppb h⁻¹ (99.61 %) in Shanghai, and 1.75 ppb h⁻¹ (98.29 %) in Guangzhou] (Table S1). RO₂ radicals were

formed mainly from the reactions of OH + OLET (terminal olefin carbons)/OLEI (internal olefin carbons) [0.19 ppb h⁻¹ (22.45 %) in Beijing, 0.05 ppb h⁻¹ (21.07 %) in Shanghai, and 0.06 ppb h⁻¹ (14.88 %) in Guangzhou], OH + ETH (ethene) [0.16 ppb h⁻¹ (18.36 %) in Beijing, 0.03 ppb h⁻¹ (11.91 %) in Shanghai, and 0.04 ppb h⁻¹ (10.24 %) in Guangzhou], OH + methane (CH₄) [0.10 ppb h⁻¹ (12.09 %) in Beijing, 0.06 ppb h⁻¹ (22.44 %) in Shanghai, and 0.14 ppb h⁻¹ (33.97 %) in Guangzhou], and OH + AONE (acetone) [0.09 ppb h⁻¹ (10.76 %) in Beijing, 0.02 ppb h⁻¹ (7.09 %) in Shanghai, and 0.05 ppb h⁻¹ (11.24 %) in Guangzhou]. RO₂ radicals were consumed primarily via the reaction of CH₃O₂ + NO [0.54 ppb h⁻¹ (94.56 %) in Beijing, 0.16 ppb h⁻¹ (95.28 %) in Shanghai, and 0.33 ppb h⁻¹ (96.07 %) in Guangzhou] (Table S2).

When the additional HONO sources were inserted into the WRF-Chem model (case R_p), the OH production rate was enhanced by 4.32 (= 7.10 – 2.78) [3.86 due to the $P_{unknown}$] ppbh⁻¹ in Beijing, 0.67 (= 1.40 – 0.73) [0.64] ppbh⁻¹ in Shanghai, and 0.80 (= 2.55 – 1.75) [0.68] ppbh⁻¹ in Guangzhou via the reaction of HO₂ + NO, and by 4.11 (= 4.76 – 0.65) [3.61] ppbh⁻¹ in Beijing, 1.11 (= 1.44 – 0.33) [1.05] ppbh⁻¹ in Shanghai, and 0.85 (= 1.10 – 0.25) [0.69] ppbh⁻¹ in Guangzhou via the photolysis of HONO, respectively (Table 4). The enhancements of the OH production rate due to the photolysis of HONO were comparable with the 2.20 ppbh⁻¹ obtained by Liu et al. (2012). The OH loss rate was increased by 2.03 (= 3.15 – 1.12) [1.92 due to the $P_{unknown}$] ppbh⁻¹

²⁰ in Beijing, 0.58 (= 1.05 – 0.47) [0.55] ppb h⁻¹ in Shanghai, and 0.65 (= 1.42 – 0.77) [0.58] ppb h⁻¹ in Guangzhou via the reaction of OH + NO₂, and by 1.78 (= 2.57 – 0.79) [1.64] ppb h⁻¹ in Beijing, 0.31 (= 0.51 – 0.20) [0.28] ppb h⁻¹ in Shanghai, and 0.42 (= 1.00 – 0.58) [0.36] ppb h⁻¹ in Guangzhou via the reaction of OH + CO, respectively (Table 4). Similarly, the HO₂ production rate was increased by 0.31 [0.28 due to the ²⁵ $P_{unknown}$] to 1.78 [1.64] ppb h⁻¹ in Beijing, Shanghai and Guangzhou via the reaction of OH + CO, and by 0.63 (= 1.17 – 0.54) [0.59] ppb h⁻¹ in Beijing, 0.10 (= 0.26 – 0.16) [0.09] ppb h⁻¹ in Shanghai, and 0.19 (= 0.52 – 0.33) [0.17] ppb h⁻¹ in Guangzhou via the reaction of CH₃O₂ + NO; whereas, the HO₂ loss rate was enhanced by 0.67

[0.61 due to the $P_{unknown}$] to 4.32 [4.27] ppb h⁻¹ in Beijing, Shanghai and Guangzhou via the reaction of HO₂ + NO (Table S1). The additional HONO sources also led to an increase of 0.06 (= 0.11 – 0.05) [0.04 due to the $P_{unknown}$] to 0.35 (= 0.54 – 0.19) [0.28] ppb h⁻¹ via the reaction of OH + OLET/OLEI, 0.04 (= 0.07 – 0.03) [0.03] to 0.32 (= 0.48 – 0.16) [0.28] ppb h⁻¹ via the reaction of OH + ETH, 0.06 (= 0.12 – 0.06) [0.06] to 0.16 (= 0.26 – 0.10) [0.15] ppb h⁻¹ via the reaction of OH + CH₄, and 0.03 (= 0.05 – 0.02) [0.03] to 0.23 (= 0.32 – 0.09) [0.21] ppb h⁻¹ via the reaction of OH + AONE in the RO₂ production rate, and 0.10 [0.09 due to the $P_{unknown}$] to 0.63 [0.59] ppb h⁻¹ via the reaction of CH₃O₂ + NO in the RO₂ loss rate in Beijing, Shanghai and Guangzhou (Table S2).

Overall, the daytime net production rate of RO_x was increased to 6.38 (= 5.46+0.71+ 0.21) [4.17 due to the P_{unknown}] from 1.86 (= 1.26 + 0.43 + 0.17) ppb h⁻¹ in Beijing, 2.03 (= 1.80 + 0.19 + 0.04) [1.11] from 0.87 (= 0.69 + 0.14 + 0.04) ppb h⁻¹ in Shanghai, and 2.13 (= 1.82 + 0.26 + 0.05) [0.72] from 1.16 (= 0.92 + 0.20 + 0.04) ppb h⁻¹ in Guangzhou

- (Fig. 12) due to the additional HONO sources, indicating that the RO_x source was mainly from OH production, especially via the photolysis of HONO. This result is different from the conclusion of Liu et al. (2012) that the photolysis of HONO and oxygenated VOCs is the largest RO_x source. One of the primary reasons for this is the underestimation of anthropogenic VOCs (Wang et al., 2014). For Beijing, the net production rate
 of RO_x was 6.38 ppb h⁻¹, consistent with the 6.60 ppb h⁻¹ from the field studies of Liu
- of RO_x was 6.38 ppb h⁻¹, consistent with the 6.60 ppb h⁻¹ from the field studies of Liu et al. (2012). Our results reconfirmed the view of Ma et al. (2012) that the North China Plain acts as an oxidation pool. The additional HONO sources produced an increase in the net loss rate of RO_x from 1.25 (= 1.23 + 0.01 + 0.01) to 3.28 (3.24 + 0.03 + 0.01) [1.96 due to the P_{unknown}] ppb h⁻¹ in Beijing, 0.53 (= 0.51 + 0.01 + 0.01) to 1.09 (= 1.07 + 0.01 + 0.01) [0.54] ppb h⁻¹ in Shanghai, and 0.85 (= 0.82 + 0.02 + 0.01) to 1.51 (= 1.47 + 0.03 + 0.01) [0.59] ppb h⁻¹ in Guangzhou (Fig. 12).

4 Conclusions

The relationship between the $P_{unknown}$, NO₂ mixing ratios and J(NO₂) was investigated using available data from 13 field studies across the globe. The formula $P_{unknown} \approx$ 19.60 × NO₂ × J(NO₂) was obtained, and then the additional HONO sources (i.e. the $P_{unknown}$, HONO emissions and nighttime hydrolysis conversion of NO₂ on aerosols) were inserted into the WRF-Chem model, to assess the $P_{unknown}$ impacts on the concentrations and budgets of HONO and RO_x in the coastal regions of China. The results showed that:

- 1. The additional HONO sources led to significant improvements in the simulations of HONO and OH, especially in the daytime.
- Elevated daytime-mean P_{unknown} values were found in the coastal regions of China, reaching 2.5 ppbh⁻¹ in the BTH region, 2.0 ppbh⁻¹ in the YRD region, and 1.2 ppbh⁻¹ in the PRD region.
- 3. When the additional HONO sources were considered, nighttime HONO was produced primarily via Reaction (R4) (0.20–1.42 ppb h⁻¹ in Beijing, Shanghai and Guangzhou). Simulated P_{unknown} values lay between 0.42 and 2.98 ppb h⁻¹ in Beijing, between 0.18 and 2.58 ppb h⁻¹ in Shanghai, and between 0.06 and 1.66 ppb h⁻¹ in Guangzhou. HONO emissions contributed 0.04–0.62 ppb h⁻¹ to HONO production.
- 4. The additional HONO sources substantially enhanced the production and loss rates of HONO. The maximum production rate of HONO was increased to 4.70 [1.44 due to the P_{unknown}] from 0.69 ppbh⁻¹ in Beijing, 4.25 [3.13] from 1.20 ppbh⁻¹ in Shanghai, and 1.58 [0.40] from 0.72 ppbh⁻¹ in Guangzhou via the reaction of OH and NO in the morning; whereas, the maximum loss rate of HONO was increased to 5.20 [1.97] from 0.62 ppbh⁻¹ in Beijing, 4.31 [1.44] from 1.09 ppbh⁻¹ in Shanghai, and 1.96 [1.18] from 0.65 ppbh⁻¹ in Guangzhou via

10

15

the photolysis of HONO. Dry deposition of HONO contributed 0.28–0.45 ppb h⁻¹ to the loss rate of HONO, approximately equivalent to the contribution of HONO emissions, emphasizing the importance of dry deposition of HONO in high NO_x emission areas.

- 5. The P_{unknown} produced a 60–210 % enhancement of OH, a 60–250 % enhancement of HO₂, and a 60–180 % enhancement of RO₂ near the ground in the major cities of the coastal regions of China. Vertically, the P_{unknown} enhanced the daytime meridional-mean mixing ratios of OH, HO₂ and RO₂ by 5–38, 5–47 and 5–48 %, respectively, within 1000 m above the ground.
- 6. When the additional HONO sources were added, the photolysis of HONO became the most important source of OH in Beijing and Guangzhou before 10:00 LST, and in Shanghai before 12:00 LST, with a maximum of 10.01 [7.26 due to the P_{unknown}]ppb h⁻¹ in Beijing, 2.63 [1.92] ppb h⁻¹ in Shanghai, and 2.60 [2.07] ppb h⁻¹ in Guangzhou; whereas, the reaction of HO₂ + NO was dominated in Beijing and Guangzhou after 10:00 LST and in Shanghai after 12:00 LST, with a maximum of 9.38 [7.23] ppb h⁻¹ in Beijing, 2.63 [1.15] ppb h⁻¹ in Shanghai, and 4.88 [1.43] ppb h⁻¹ in Guangzhou.
 - 7. The additional HONO sources, especially the $P_{unknown}$, accelerated the whole RO_x cycle. The OH production rates were enhanced by 4.32 [3.86 due to the $P_{unknown}$] ppbh⁻¹ in Beijing, 0.67 [0.64] ppbh⁻¹ in Shanghai, and 0.80 [0.68] ppbh⁻¹ in Guangzhou via the reaction of $HO_2 + NO$, and by 4.11 [3.61] ppbh⁻¹ in Beijing, 1.11 [1.05] ppbh⁻¹ in Shanghai, and 0.85 [0.69] ppbh⁻¹ in Guangzhou via the photolysis of HONO. The OH loss rates were increased by 2.03 [1.92 due to the $P_{unknown}$] ppbh⁻¹ in Beijing, 0.58 [0.55] ppbh⁻¹ in Shanghai, and 0.65 [0.58] ppbh⁻¹ in Guangzhou via the reaction of OH + NO₂, and by 1.78 [1.64] ppbh⁻¹ in Beijing, 0.31 [0.28] ppbh⁻¹ in Shanghai, and 0.42 [0.36] ppbh⁻¹ in Guangzhou via the reaction of OH + CO.

20

25

8. The additional HONO sources produced an increase of 0.31 [0.28 due to the P_{unknown}] to 1.78 [1.64] ppbh⁻¹ via the reaction of OH + CO and 0.10 [0.09] to 0.63 [0.59] ppbh⁻¹ via the reaction of CH₃O₂ + NO in the HO₂ production rate, and 0.67 [0.61] to 4.32 [4.27] ppbh⁻¹ via the reaction of HO₂ + NO in the HO₂ loss rate in Beijing, Shanghai and Guangzhou. Similarly, the additional HONO sources led to an enhancement of 0.06 [0.04] to 0.35 [0.28] ppbh⁻¹ via the reaction of OH + OLET/OLEI, 0.04 [0.03] to 0.32 [0.28] ppbh⁻¹ via the reaction of OH + ETH, 0.06 [0.06] to 0.16 [0.15] ppbh⁻¹ via the reaction of OH + CH₄, and 0.03 [0.03] to 0.23 [0.21] ppbh⁻¹ via the reaction of OH + AONE in the RO₂ production rate, and 0.10 [0.09] to 0.63 [0.59] ppbh⁻¹ via the reaction of CH₃O₂ + NO in the RO₂ loss rate in Beijing, Shanghai and Guangzhou.

Overall, the above results suggest that the $P_{unknown}$ significantly enhances the atmospheric oxidation capacity in the coastal regions of China by increasing RO_x concentrations and accelerating RO_x cycles, and could lead to considerable increases in concentrations of inorganic aerosols and secondary organic aerosols and further aggravate haze events in these regions.

The Supplement related to this article is available online at doi:10.5194/acpd-15-807-2015-supplement.

5

10

15

Acknowledgements. This research was partially supported by the National Natural Science
 Foundation of China (41175105, 41405121), a Key Project of the Chinese Academy of Sciences (XDB05030301), the Carbon and Nitrogen Cycle Project of the Institute of Atmospheric Physics, Chinese Academy of Sciences, and the Beijing Municipal Natural Science Foundation (8144054).

References

10

20

- Acker, K. and Möller, D.: Corrigendum to: Atmospheric variation of nitrous acid at different sites in Europe, Environ. Chem., 4, 364–364, 2007.
- Acker, K., Möller, D., Wieprecht, W., Meixner, F. X., Bohn, B., Gilge, S., Plass-Dülmer, C., and
- Berresheim, H.: Strong daytime production of OH from HNO₂ at a rural mountain site, Geophys. Res. Lett., 33, L02809, doi:10.1029/2005GL024643, 2006.
 - Alicke, B., Platt, U., and Stutz, J.: Impact of nitrous acid photolysis on the total hydroxyl radical budget during the limitation of oxidant production/Pianura padana produzione di ozono study in Milan, J. Geophys. Res.-Atmos., 107, LOP9-1 LOP9-17, doi:10.1029/2000JD000075, 2002.
 - Amedro, D., Parker, A. E., Schoemaecker, C., and Fittschen, C.: Direct observation of OH radicals after 565 nm multi-photon excitation of NO₂ in the presence of H₂O, Chem. Phys. Lett., 513, 12–16, 2011.

Ammann, M., Kalberer, M., Jost, D. T., Tobler, L., Rössler, E., Piguet, D., Gäggeler, H., and

- ¹⁵ Baltensperger, U.: Heterogeneous production of nitrous acid on soot in polluted air masses, Nature, 395, 157–160, 1998.
 - An, J., Li, Y., Wang, F., and Xie, P.: Impacts of photoexcited NO₂ chemistry and heterogeneous reactions on concentrations of O₃ and NO_y in Beijing, Tianjin and Hebei province of China, in: Air Quality-Models and Applications, edited by: Mazzeo, N., InTech, 197–210, ISBN 978-953-307-307-1, 2011.
 - An, J., Li, Y., Chen, Y., Li, J., Qu, Y., and Tang, Y.: Enhancements of major aerosol components due to additional HONO sources in the North China Plain and implications for visibility and haze, Adv. Atmos. Sci., 30, 57–66, 2013.

Atkinson, R. and Aschmann, S. M.: Hydroxyl radical production from the gas-phase reactions

- of ozone with a series of alkenes under atmospheric conditions, Environ. Sci. Technol., 27, 1357–1363, 1993.
 - Carr, S., Heard, D., and Blitz, M.: Comment on "Atmospheric hydroxyl radical production from electronically excited NO₂ and H₂O", Science, 324, 5925, doi:10.1126/science.1166669, 2009.
- ³⁰ Crutzen, P. J. and Zimmermann, P. H.: The changing photochemistry of the troposphere, Tellus B, 43, 136–151, 1991.

829

Gonçalves, M., Dabdub, D., Chang, W. L., Jorba, O., and Baldasano, J. M.: Impact of HONO sources on the performance of mesoscale air quality models, Atmos. Environ., 54, 168-176, 2012.

tropospheric OH photochemistry experiment, J. Geophys. Res.-Atmos., 102, 6283-6296, 1997. George, C., Strekowski, R. S., Kleffmann, J., Stemmler, K., and Ammann, M.: Photoenhanced uptake of gaseous NO₂ on solid organic compounds: a photochemical source of HONO?

Faraday Discuss, 130, 195-210, 2005.

- Fried, A., McKeen, S., Sewell, S., Harder, J., Henry, B., Goldan, P., Kuster, W., William, E., Baumann, K., Shett, R., and Cantrell, C.: Photochemistry of formaldehyde during the 1993 25
- Finlayson-Pitts, B. J., Wingen, L. M., Sumner, A. L., Syomin, D., and Ramazan, K. A.: The heterogeneous hydrolysis of NO₂ in laboratory systems and in outdoor and indoor atmospheres: an integrated mechanism, Phys. Chem. Chem. Phys., 5, 223-242, 2003.
- Fast, J. D., Gustafson, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G., Grell, G. A., and Peckham, S. E.: Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorologychemistryaerosol model, J. Geophys. Res.-Atmos., 111, D21305, doi:10.1029/2005JD006721, 2006.
- Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci, Model Dev., 3, 43-67, 15 doi:10.5194/gmd-3-43-2010, 2010.
- Phys., 12, 9977-10000, doi:10.5194/acp-12-9977-2012, 2012, Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C.,
- Elshorbany, Y. F., Kurtenbach, R., Wiesen, P., Lissi, E., Rubio, M., Villena, G., Gramsch, E., Rickard, A. R., Pilling, M. J., and Kleffmann, J.: Oxidation capacity of the city air of Santiago, Chile, Atmos. Chem. Phys., 9, 2257–2273, doi:10.5194/acp-9-2257-2009, 2009. Elshorbany, Y. F., Steil, B., Brühl, C., and Lelieveld, J.: Impact of HONO on global atmospheric

5

10

20

30

acid and its impact on ozone and hydroxyl radical during the Texas Air Quality Study 2006, Atmos. Chem. Phys., 12, 6939–6951, doi:10.5194/acp-12-6939-2012, 2012. Dentener, F. J. and Crutzen, P. J.: Reaction of N_2O_5 on tropospheric aerosols: impact on the global distributions of NO_x, O₃, and OH, J. Geophys. Res.-Atmos., 98, 7149–7163, 1993.

Czader, B. H., Rappenglück, B., Percell, P., Byun, D. W., Ngan, F., and Kim, S.: Modeling nitrous

ACPD

Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B.: Fully coupled "online" chemistry within the WRF model, Atmos. Environ., 39, 6957–6975, 2005.

Hens, K., Novelli, A., Martinez, M., Auld, J., Axinte, R., Bohn, B., Fischer, H., Keronen, P., Ku-

⁵ bistin, D., Nölscher, A. C., Oswald, R., Paasonen, P., Petäjä, T., Regelin, E., Sander, R., Sinha, V., Sipilä, M., Taraborrelli, D., Tatum Ernest, C., Williams, J., Lelieveld, J., and Harder, H.: Observation and modelling of HO_x radicals in a boreal forest, Atmos. Chem. Phys., 14, 8723–8747, doi:10.5194/acp-14-8723-2014, 2014.

Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 34, 2131–2159, 2000.

Kanaya, Y., Pochanart, P., Liu, Y., Li, J., Tanimoto, H., Kato, S., Suthawaree, J., Inomata, S., Taketani, F., Okuzawa, K., Kawamura, K., Akimoto, H., and Wang, Z. F.: Rates and regimes of photochemical ozone production over Central East China in June 2006: a box model analysis using comprehensive measurements of ozone precursors, Atmos. Chem. Phys., 9, 7711, 7700, doi:10.5104/com.0.7711.0000

¹⁵ 7711–7723, doi:10.5194/acp-9-7711-2009, 2009.

10

20

Kerbrat, M., Legrand, M., Preunkert, S., Gallée, H., and Kleffmann, J.: Nitrous acid at Concordia (inland site) and Dumont d'Urville (coastal site), East Antarctica, J. Geophys. Res.-Atmos., 117, D08303, doi:10.1029/2011JD017149, 2012.

Kleffmann, J., Becker, K. H., Lackhoff, M., and Wiesen, P.: Heterogeneous conversion of NO₂ on carbonaceous surfaces, Phys. Chem. Chem. Phys., 1, 5443–5450, 1999.

- Kleffmann, J., Gavriloaiei, T., Hofzumahaus, A., Holland, F., Koppmann, R., Rupp, L., Schlosser, E., Siese, M., and Wahner, A.: Daytime formation of nitrous acid: a major source of OH radicals in a forest, Geophys. Res. Lett., 32, L05818, doi:10.1029/2005GL022524, 2005.
- Li, G., Lei, W., Zavala, M., Volkamer, R., Dusanter, S., Stevens, P., and Molina, L. T.: Impacts of HONO sources on the photochemistry in Mexico City during the MCMA-2006/MILAGO Campaign, Atmos. Chem. Phys., 10, 6551–6567, doi:10.5194/acp-10-6551-2010, 2010.
 - Li, L., Chen, C. H., Huang, C., Huang, H. Y., Zhang, G. F., Wang, Y. J., Wang, H. L., Lou, S. R., Qiao, L. P., Zhou, M., Chen, M. H., Chen, Y. R., Streets, D. G., Fu, J. S., and Jang, C. J.:
- ³⁰ Process analysis of regional ozone formation over the Yangtze River Delta, China using the Community Multi-scale Air Quality modeling system, Atmos. Chem. Phys., 12, 10971–10987, doi:10.5194/acp-12-10971-2012, 2012.

831

- Li, S., Matthews, J., and Sinha, A.: Atmospheric hydroxyl radical production from electronically excited NO₂ and H₂O, Science, 319, 1657–1660, 2008.
- Li, X., Brauers, T., Häseler, R., Bohn, B., Fuchs, H., Hofzumahaus, A., Holland, F., Lou, S., Lu, K. D., Rohrer, F., Hu, M., Zeng, L. M., Zhang, Y. H., Garland, R. M., Su, H., Nowak, A.,
- ⁵ Wiedensohler, A., Takegawa, N., Shao, M., and Wahner, A.: Exploring the atmospheric chemistry of nitrous acid (HONO) at a rural site in Southern China, Atmos. Chem. Phys., 12, 1497–1513, doi:10.5194/acp-12-1497-2012, 2012.
 - Li, Y., An, J., Min, M., Zhang, W., Wang, F., Xie, P.: Impacts of HONO sources on the air quality in Beijing, Tianjin and Hebei province of China, Atmos. Environ., 45, 4735–4744, 2011.
- Liu, Z., Wang, Y., Gu, D., Zhao, C., Huey, L. G., Stickel, R., Liao, J., Shao, M., Zhu, T., Zeng, L., Amoroso, A., Costabile, F., Chang, C.-C., and Liu, S.-C.: Summertime photochemistry during CAREBeijing-2007: RO_x budgets and O₃ formation, Atmos. Chem. Phys., 12, 7737–7752, doi:10.5194/acp-12-7737-2012, 2012.

Lu, K. D., Rohrer, F., Holland, F., Fuchs, H., Bohn, B., Brauers, T., Chang, C. C., Häseler, R.,

¹⁵ Hu, M., Kita, K., Kondo, Y., Li, X., Lou, S. R., Nehr, S., Shao, M., Zeng, L. M., Wahner, A., Zhang, Y. H., and Hofzumahaus, A.: Observation and modelling of OH and HO₂ concentrations in the Pearl River Delta 2006: a missing OH source in a VOC rich atmosphere, Atmos. Chem. Phys., 12, 1541–1569, doi:10.5194/acp-12-1541-2012, 2012.

Ma, J. Z., Wang, W., Chen, Y., Liu, H. J., Yan, P., Ding, G. A., Wang, M. L., Sun, J., and

- Lelieveld, J.: The IPAC-NC field campaign: a pollution and oxidization pool in the lower atmosphere over Huabei, China, Atmos. Chem. Phys., 12, 3883–3908, doi:10.5194/acp-12-3883-2012, 2012.
 - Michoud, V., Colomb, A., Borbon, A., Miet, K., Beekmann, M., Camredon, M., Aumont, B., Perrier, S., Zapf, P., Siour, G., Ait-Helal, W., Afif, C., Kukui, A., Furger, M., Dupont, J. C.,
- Haeffelin, M., and Doussin, J. F.: Study of the unknown HONO daytime source at a European suburban site during the MEGAPOLI summer and winter field campaigns, Atmos. Chem. Phys., 14, 2805–2822, doi:10.5194/acp-14-2805-2014, 2014.

30

- Monge, M. E., D'Anna, B., Mazri, L., Giroir-Fendler, A., Ammann, M., Donaldson, D. J., and George, C.: Light changes the atmospheric reactivity of soot, P. Natl. Acad. Sci. USA, 107, 6605–6609, 2010.
- Oswald, R., Behrendt, T., Ermel, M., Wu, D., Su, H., Cheng, Y., Breuninger, C., Moravek, A., Mougin, E., Delon, C., Loubet, B., Pommerening-Röser, A., Sörgel, M., Pöschl, U., Hoff-

mann, T., Andreae, M. O., Meixner, F. X., and Trebs, I.: HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen, Science, 341, 1233–1235, 2013.

Paulson, S. E., Sen, A. D., Liu, P., Fenske, J. D., and Fox, M. J.: Evidence for formation of OH radicals from the reaction of O₃ with alkenes in the gas phase, Geophys. Res. Lett., 24, 3193–3196, 1997.

5

20

30

Platt, U., Perner, D., Harris, G. W., Winer, A. M., and Pitts, J. N.: Observations of nitrous acid in an urban atmosphere by differential optical absorption, Nature, 285, 312–314, doi:10.1038/285312a0, 1980.

Qin, M., Xie, P. H., Liu, W. Q., Li, A., Dou, K., Fang, W., Liu, J., and Zhang, W. J.: Observation of atmospheric nitrous acid with DOAS in Beijing, China, J. Environ. Sci., 18, 69–75, 2006.

of atmospheric nitrous acid with DOAS in Beijing, China, J. Environ. Sci., 18, 69–75, 2006. Qin, M., Xie, P., Su, H., Gu, J., Peng, F., Li, S., Zengb, L., Liua, J., Liua, W., and Zhang, Y.: An observational study of the HONO–NO₂ coupling at an urban site in Guangzhou City, South China, Atmos. Environ., 43, 5731–5742, 2009.

Ren, X., Harder, H., Martinez, M., Lesher, R. L., Oliger, A., Simpas, J. B., Brunea, W. H.,

- ¹⁵ Schwab, J. J., Demerjian, K. L., He, Y., Zhou, X., and Gao, H.: OH and HO₂ chemistry in the urban atmosphere of New York City, Atmos. Environ., 37, 3639–3651, 2003.
 - Ren, X., Gao, H., Zhou, X., Crounse, J. D., Wennberg, P. O., Browne, E. C., LaFranchi, B. W., Cohen, R. C., McKay, M., Goldstein, A. H., and Mao, J.: Measurement of atmospheric nitrous acid at Bodgett Forest during BEARPEX2007, Atmos. Chem. Phys., 10, 6283–6294, doi:10.5194/acp-10-6283-2010, 2010.
 - Rohrer, F., Bohn, B., Brauers, T., Brüning, D., Johnen, F.-J., Wahner, A., and Kleffmann, J.: Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR, Atmos. Chem. Phys., 5, 2189–2201, doi:10.5194/acp-5-2189-2005, 2005.

Sörgel, M., Regelin, E., Bozem, H., Diesch, J.-M., Drewnick, F., Fischer, H., Harder, H.,

- Held, A., Hosaynali-Beygi, Z., Martinez, M., and Zetzsch, C.: Quantification of the unknown HONO daytime source and its relation to NO₂, Atmos. Chem. Phys., 11, 10433–10447, doi:10.5194/acp-11-10433-2011, 2011.
 - Sarwar, G., Roselle, S. J., Mathur, R., Appel, W., Dennis, R. L., and Vogel, B.: A comparison of CMAQ HONO predictions with observations from the Northeast Oxidant and Particle Study, Atmos. Environ., 42, 5760–5770, 2008.
 - Spataro, F., Ianniello, A., Esposito, G., Allegrini, I., Zhu, T., and Hu, M.: Occurrence of atmospheric nitrous acid in the urban area of Beijing (China), Sci. Total Environ., 447, 210–224, 2013.

Stemmler, K., Ammann, M., Donders, C., Kleffmann, J., and George, C.: Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid, Nature, 440, 195-198, 2006.

Stemmler, K., Ndour, M., Elshorbany, Y., Kleffmann, J., D'Anna, B., George, C., Bohn, B., and

Ammann, M.: Light induced conversion of nitrogen dioxide into nitrous acid on submicron hu-5 mic acid aerosol, Atmos. Chem. Phys., 7, 4237–4248, doi:10.5194/acp-7-4237-2007, 2007. Stone, D., Whalley, L. K., and Heard, D. E.: Tropospheric OH and HO₂ radicals: field measure-

ments and model comparisons, Chem. Soc. Rev., 41, 6348-6404, 2012.

Su, H., Cheng, Y. F., Shao, M., Gao, D. F., Yu, Z. Y., Zeng, L. M., Slanina, J., Zhang, Y. H.,

- and Wiedensohler, A.: Nitrous acid (HONO) and its daytime sources at a rural site dur-10 ing the 2004 PRIDE-PRD experiment in China. J. Geophys. Res.-Atmos., 113, D14312. doi:10.1029/2007JD009060.2008.
 - Su, H., Cheng, Y., Oswald, R., Behrendt, T., Trebs, I., Meixner, F. X., Andreae, M. O., Cheng, P., Zhang, Y., and Pöschl, U.: Soil nitrite as a source of atmospheric HONO and OH radicals, Science, 333, 1616–1618, 2011,

15

Tang, Y., An, J., Li, Y., and Wang, F.: Uncertainty in the uptake coefficient for HONO formation on soot and its impacts on concentrations of major chemical components in the Beijing-Tianjin-Hebei region, Atmos. Environ., 84, 163-171, 2014.

VandenBoer, T. C., Brown, S. S., Murphy, J. G., Keene, W. C., Young, C. J., Pszenny, A. A. P.,

- Kim, S., Warneke, C., de Gouw, J. A., Maben, J. R., Wagner, N. L., Riedel, T. P., Thorn-20 ton, J. A., Wolfe, D. E., Dubé, W. P., Öztürk, F., Brock, C. A., Grossberg, N., Lefer, B., Lerner, B. Middlebrook, A. M., and Roberts, J. M.: Understanding the role of the ground surface in HONO vertical structure: high resolution vertical profiles during NACHTT-11, J. Geophys. Res.-Atmos., 118, 10155–10171, doi:10.1002/jgrd.50721, 2013.
- Villena, G., Wiesen, P., Cantrell, C. A., Flocke, F., Fried, A., Hall, S. R., Hornbrook, R. S., Knapp, D., Kosciuch, E., Mauldin, R. L., McGrath, J. A., Montzka, D., Richter, D., Ullmann, K., Walega, J., Weibring, P., Weinheimer, A., Staebler, R. M., Liao, J., Huey, L. G., and Kleffmann, J.: Nitrous acid (HONO) during polar spring in Barrow, Alaska: a net source of OH radicals?, J. Geophys. Res.-Atmos., 116, D00R07, doi:10.1029/2011JD016643, 2011.
- Wang, F., An, J., Li, Y., Tang, Y., Lin, J., Qu, Y., Cheng, Y., Zhang, B., and Zhai, J.: Impacts 30 of uncertainty in AVOC emissions on the summer RO, budget and ozone production rate in the three most rapidly-developing economic growth regions of China, Adv. Atmos. Sci., 31, 1331-1342, 2014.

- Wang, X., Zhang, Y., Hu, Y., Zhou, W., Lu, K., Zhong, L., Zeng, L., Shao, M., Hu, M., and Russell, A. G.: Process analysis and sensitivity study of regional ozone formation over the Pearl River Delta, China, during the PRIDE-PRD2004 campaign using the Community Multiscale Air Quality modeling system, Atmos. Chem. Phys., 10, 4423–4437, doi:10.5194/acp-10-4423-2010, 2010.
- Wong, K. W., Oh, H.-J., Lefer, B. L., Rappenglück, B., and Stutz, J.: Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX, Atmos. Chem. Phys., 11, 3595–3609, doi:10.5194/acp-11-3595-2011, 2011.

Wong, K. W., Tsai, C., Lefer, B., Haman, C., Grossberg, N., Brune, W. H., Ren, X., Luke, W.,

- and Stutz, J.: Daytime HONO vertical gradients during SHARP 2009 in Houston, TX, Atmos. Chem. Phys., 12, 635–652, doi:10.5194/acp-12-635-2012, 2012.
 - Wong, K. W., Tsai, C., Lefer, B., Grossberg, N., and Stutz, J.: Modeling of daytime HONO vertical gradients during SHARP 2009, Atmos. Chem. Phys., 13, 3587–3601, doi:10.5194/acp-13-3587-2013, 2013.
- ¹⁵ Wu, J., Xu, Z., Xue, L., and Wang, T.: Daytime nitrous acid at a polluted suburban site in Hong Kong: indication of heterogeneous production on aerosol, in: Proceedings of 12th international conference on atmospheric sciences and applications to air quality, Seoul, Korea, 3–5 June 2013, 52, 2013.

Zaveri, R. A. and Peters, L. K.: A new lumped structure photochemical mechanism for large-

scale applications, J. Geophys. Res.-Atmos., 104, 30387–30415, 1999.

5

25

Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for simulating aerosol interactions and chemistry (MOSAIC), J. Geophys. Res.-Atmos., 113, D13204, doi:10.1029/2007JD008782, 2008.

Zhang, B. and Tao, F.: Direct homogeneous nucleation of NO₂, H₂O, and NH₃ for the production of ammonium nitrate particles and HONO gas, Chem. Phys. Lett., 489, 4–6, 2010.

Zhang, H., Li, J., Ying, Q., Yu, J. Z., Wu, D., Cheng, Y., Kebin, H., and Jiang, J.: Source apportionment of PM_{2.5} nitrate and sulfate in China using a source-oriented chemical transport model, Atmos. Environ., 62, 228–242, 2012a.

Zhang, N., Zhou, X., Bertman, S., Tang, D., Alaghmand, M., Shepson, P. B., and Carroll, M. A.:

Measurements of ambient HONO concentrations and vertical HONO flux above a northern Michigan forest canopy, Atmos. Chem. Phys., 12, 8285–8296, doi:10.5194/acp-12-8285-2012, 2012b.

- Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131-5153, doi:10.5194/acp-9-5131-2009, 2009.
- 5 Zhou, X., Civerolo, K., Dai, H., Huang, G., Schwab, J., and Demerjian, K: Summertime nitrous acid chemistry in the atmospheric boundary layer at a rural site in New York State, J. Geophys. Res.-Atmos., 107, 4590, doi:10.1029/2001JD001539, 2002a.
 - Zhou, X., He, Y., Huang, G., Thornberry, T. D., Carroll, M. A., and Bertman, S. B.: Photochemical production of nitrous acid on glass sample manifold surface, Geophys. Res. Lett., 29, 26-1-26-4, doi:10.1029/2002GL015080, 2002b.
 - Zhou, X., Gao, H., He, Y., Huang, G., Bertman, S. B., Civerolo, K., and Schwab, J.: Nitric acid photolysis on surfaces in low NO_v environments: significant atmospheric implications, Geophys. Res. Lett., 30, 2217, doi:10.1029/2003GL018620, 2003.

10

Zhou, X., Zhang, N., TerAvest, M., Tang, D., Hou, J., Bertman, S., Alaghmand, M., Shep-

son, P. B., Carroll, M. A., Griffith, S., Dusanter, S., and Stevens, P. S.: Nitric acid photolysis 15 on forest canopy surface as a source for tropospheric nitrous acid, Nat. Geosci., 4, 440-443, 2011.

Discussion Pa	AC 15, 807–{	PD 351, 2015						
aper Discussi	Impacts of an unknown daytime nitrous acid source Y. Tang et al.							
ion Paper	Title Abstract	Page Introduction						
—	Conclusions	References						
Discus	Tables	Figures						
sion	I	►I						
Pap		Þ						
θŗ	Back	Close						
D	Full Scre	een / Esc						
iscuss	Printer-friendly Version							
ion I	Interactive	Discussion						
Paper								

Discussion Pa	ACPD 15, 807–851, 2015						
iper Discussion	Impacts of an unknown daytime nitrous acid source Y. Tang et al.						
Pap	Title	Page					
θŗ	Abstract	Introduction					
	Conclusions	References					
Discus	Tables	Figures					
sion	14	►I					
Pap		F					
er	Back	Close					
– Die	Full Screen / Esc						
scussi	Printer-friendly Version						
on P	Interactive	Discussion					
aper	œ	ву					

Table 1. Model performance statistics for O_3 and NO_2 in Beijing in August 2007 and Guangzhou in July 2006.

Species	Case	MB (ppb)	ME (ppb)	RMSE (ppb)	NMB (%)	NME (%)	IOA
O ₃	R _p	-0.65	19.40	25.44	-2.20	66.10	0.80
	R	-6.69	17.21	25.24	-22.80	58.70	0.79
NO ₂	R _p	-9.50	17.31	21.40	-29.10	53.00	0.51
	R	-4.40	13.75	17.61	-13.50	42.10	0.57

MB: mean bias; ME: mean error; RMSE: root-mean-square error; NMB: normalized mean bias; NME: normalized mean error; IOA: index of agreement.

Species	Case	MB (10 ⁶ molec cm ⁻³)	ME (10 ⁶ molec cm ⁻³)	RMSE (10 ⁶ molec cm ⁻³)	NMB (%)	NME (%)	IOA	CC
HONO	R	_0.54	0.98	1 /1	_24.30	44.50	0.73	0.57
(Beijing)	P P	-0.34 _1.37	1 / 1	1.41	-62.00	64 10	0.73	0.57
(Deijirig)	n _{wop}	2.07	2.07	2.59	02.00	04.10	0.04	0.03
HONO	n R	-2.07	0.84	2.50	-93.80	<i>4</i> 93.80	0.40	0.31
(Beijing)	P P	-0.82	0.04	1.00	-47.00	53.10	0.75	0.74
(Deijirig)	R R	-1.68	1.68	2.06	-97.90	97.90	0.75	0.75
HONOdautima	R.	-0.38	0.43	0.58	-61.20	69.60	0.58	0.56
(Guangzhou)	Ruan	-0.48	0.49	0.65	-76.50	77.70	0.55	0.56
()	R	-0.60	0.60	0.80	-95.60	96.20	0.43	-0.30
HONO	Rn	-0.42	0.75	1.05	-32.90	58.50	0.66	0.43
(Guanazhou)	Runn	-0.49	0.83	1.15	-38.40	64.30	0.63	0.38
()	R	-1.25	1.25	1.59	-97.20	97.20	0.45	-0.01

Table 2. Model performance statistics for daytime (06:00–18:00 LST) and nighttime (19:00–05:00 LST) HONO in Beijing in August 2007 and Guangzhou in July 2006.

CC: correlation coefficient.

Discussion Pap	AC 15, 807–	ACPD 15, 807–851, 2015						
oer	Impac unknowi	ts of an n daytime						
Discussior	Y. Tan	Y. Tang et al.						
ר Pap	Title	Title Page						
er	Abstract	Introduction						
_	Conclusions	References						
Discus	Tables	Figures						
sion	14	►I.						
Pap		•						
er	Back	Close						
_	Full Scr	een / Esc						
Discussion	Printer-frie Interactive	Printer-friendly Version						
Paper		BY						

Fable 3. Model performance statist	ics for OH and HO ₂	in Guangzhou in July 200	06.
------------------------------------	--------------------------------	--------------------------	-----

Species	Case	MB (10 ⁶ molec cm ⁻³)	ME (10 ⁶ molec cm ⁻³)	RMSE (10 ⁶ molec cm ⁻³)	NMB (%)	NME (%)	IOA	CC
OH	$R_{\rm p}$	-1.35	4.37	6.22	-17.60	57.00	0.84	0.75
	R_{wop}	-3.00	4.58	6.25	-112.20	126.50	0.81	0.72
	R	-3.36	4.85	6.55	-123.00	136.60	0.79	0.70
HO ₂	$R_{\rm p}$	-3.80	3.81	5.59	-78.50	78.60	0.61	0.66
	R_{wop}	-4.19	4.20	6.14	-86.60	86.70	0.54	0.59
	R	-4.22	4.23	6.16	-87.20	87.30	0.54	0.57

Table 4. Daytime (06:00–18:00 LST) OH budgets in Beijing/Shanghai/Guangzhou in August2007.

Reaction	Case R	O	Case R _{wop}	Operatelity	Case R _p	Oratrikution
	Hale	Contribution	Hale	Contribution	Hale	Contribution
OH production	(ррвп)	(%)	(ppbn)	(%)	(ppbn)	(%)
HO ₂ +NO	2.778/0.732/1.748	68.61/51.49/65.01	3.242/0.760/1.871	64.56/50.54/62.64	7.101/1.402/2.553	56.41/43.77/58.18
HONO + hv	0.650/0.331/0.245	16.05/23.26/9.12	1.151/0.386/0.406	22.91/25.67/13.60	4.761/1.437/1.100	37.82/44.88/25.00
$O^1D + H_2O$	0.465/0.307/0.617	11.48/21.62/22.96	0.479/0.306/0.630	9.53/20.35/21.08	0.567/0.312/0.651	4.51/9.75/14.84
O3+OLET/OLEI	0.101/0.024/0.027	2.50/1.65/1.01	0.095/0.023/0.027	1.89/1.54/0.90	0.080/0.021/0.025	0.64/0.64/0.56
$H_2O_2 + hv$	0.035/0.023/0.029	0.85/1.59/1.07	0.035/0.023/0.030	0.70/1.51/1.01	0.037/0.022/0.032	0.30/0.68/0.73
HO ₂ +O ₃	0.009/0.001/0.014	0.23/0.05/0.54	0.010/0.001/0.015	0.20/0.05/0.50	0.026/0.001/0.019	0.21/0.04/0.44
HNO ₃ + hv	0.005/0.001/0.002	0.12/0.05/0.09	0.005/0.001/0.002	0.10/0.04/0.08	0.007/0.001/0.003	0.05/0.03/0.06
ROOH + hv	0.003/0.004/0.005	0.08/0.28/0.17	0.003/0.004/0.005	0.07/0.28/0.17	0.007/0.007/0.007	0.05/0.21/0.17
O ₃ +ETH	0.002/< 0.001/< 0.001	0.04/0.02/0.01	0.002/< 0.001/< 0.001	0.03/0.01/0.01	0.001/< 0.001/< 0.001	0.01/0.01/0.01
HO ₂ +NO ₃	< 0.001/< 0.001/< 0.001	< 0.01/< 0.01/< 0.01	< 0.001/< 0.001/< 0.001	< 0.01/< 0.01/< 0.01	< 0.001/< 0.001/< 0.001	< 0.01/< 0.01/< 0.01
O3+ISOP	< 0.001/< 0.001/< 0.001	0.01/< 0.01/< 0.01	< 0.001/< 0.001/< 0.001	< 0.01/< 0.01/< 0.01	< 0.001/< 0.001/< 0.001	< 0.01/< 0.01/< 0.01
Total	4.049/1.422/2.688	100/100/100	5.024/1.504/2.987	100/100/100	12.590/3.203/4.387	100/100/100
OH loss						
OH + NO ₂	1.116/0.474/0.770	39.31/46.63/38.33	1.225/0.501/0.844	38.11/45.86/38.42	3.146/1.045/1.424	38.08/44.28/40.74
OH + CO	0.785/0.203/0.576	27.65/19.97/28.67	0.932/0.227/0.637	29.00/20.78/28.99	2.573/0.506/1.001	31.14/21.44/28.64
OH + OLET/OLEI	0.192/0.054/0.059	6.76/5.31/2.94	0.264/0.065/0.077	8.21/5.95/3.50	0.537/0.206/0.095	6.50/8.73/2.72
OH + HCHO	0.150/0.050/0.146	5.28/4.92/7.27	0.166/0.053/0.156	5.16/4.85/7.10	0.544/0.096/0.242	6.58/4.07/6.92
OH + CH ₄	0.103/0.057/0.135	3.63/5.61/6.72	0.109/0.059/0.142	3.39/5.40/6.46	0.260/0.115/0.223	3.15/4.87/6.38
OH + ALD2/MGLY/ANOE	0.092/0.018/0.045	3.24/1.77/2.24	0.109/0.020/0.049	3.39/1.83/2.23	0.323/0.047/0.081	3.91/1.99/2.32
OH + SO ₂	0.054/0.030/0.035	1.90/2.95/1.74	0.064/0.034/0.041	1.99/3.11/1.87	0.172/0.116/0.072	2.08/4.92/2.06
OH + XYL	0.052/0.022/0.023	1.83/2.16/1.14	0.066/0.026/0.029	2.05/2.38/1.32	0.141/0.078/0.045	1.71/3.31/1.29
OH + H ₂	0.038/0.021/0.050	1.34/2.07/2.49	0.040/0.022/0.052	1.24/2.01/2.37	0.095/0.027/0.075	1.15/1.14/2.15
OH + TOL	0.027/0.007/0.011	0.95/0.69/0.55	0.034/0.008/0.014	1.06/0.73/0.64	0.086/0.025/0.024	1.04/1.06/0.69
OH + HONO	0.003/0.003/0.005	0.11/0.30/0.25	0.006/0.004/0.007	0.19/0.37/0.32	0.069/0.023/0.032	0.84/0.97/0.92
OH + HNO _x	0.005/0.001/0.005	0.18/0.10/0.25	0.005/0.001/0.005	0.16/0.09/0.23	0.015/0.002/0.008	0.18/0.08/0.23
OH + O ₃	0.028/0.006/0.035	0.99/0.59/1.70	0.029/0.006/0.036	0.90/0.55/1.64	0.072/0.005/0.046	0.87/0.21/1.32
$OH + H_2O_2$	0.015/0.008/0.027	0.53/0.79/1.34	0.016/0.008/0.029	0.50/0.73/1.32	0.040/0.010/0.043	0.48/0.42/1.23
OH + ETH/OPEN	0.007/0.002/0.004	0.25/0.20/0.20	0.008/0.002/0.005	0.25/0.18/0.23	0.036/0.009/0.011	0.44/0.38/0.31
OH + CH3OOH/ROOH	0.010/0.011/0.014	0.35/1.08/0.70	0.011/0.012/0.014	0.34/1.10/0.64	0.022/0.020/0.022	0.27/0.85/0.63
OH + ISOP	0.019/0.004/0.002	0.67/0.39/0.10	0.020/0.004/0.003	0.62/0.37/0.14	0.017/0.007/0.003	0.21/0.30/0.09
OH + PAR	0.005/0.002/0.004	0.18/0.20/0.20	0.007/0.003/0.005	0.22/0.27/0.23	0.015/0.005/0.007	0.18/0.21/0.20
OH + ONIT/ISOPRD	0.028/0.005/0.016	0.99/0.49/0.80	0.030/0.005/0.018	0.93/0.46/0.82	0.077/0.013/0.025	0.93/0.55/0.72
$OH + C_2H_6$	0.002/0.001/0.002	0.07/0.10/0.10	0.003/0.001/0.002	0.09/0.09/0.09	0.008/0.002/0.004	0.10/0.08/0.11
OH + CH ₃ OH/ANOL/CRES	0.002/0.001/0.002	0.07/0.10/0.10	0.002/0.001/0.002	0.06/0.09/0.09	0.007/0.002/0.003	0.08/0.08/0.09
OH + HO ₂	0.001/< 0.001/0.004	0.04/0.05/0.20	0.002/< 0.001/0.005	0.06/0.05/0.23	0.006/< 0.001/0.008	0.07/0.02/0.23
OH + NO	0.105/0.036/0.039	3.70/3.54/1.94	0.066/0.030/0.025	2.05/2.75/1.14	< 0.001/< 0.001/0.001	0.01/0.02/0.03
Total	2.839/1.017/2.009	100/100/100	3.214/1.093/2.197	100/100/100	8.262/2.360/3.495	100/100/100

OLET: internal olefin carbons (C=C); OLEI: terminal olefin carbons (C=C); ROOH: higher organic peroxide; ETH: ethene; ISOP: isoprene; ALD2: acetaldehyde; MGLY: methylglyoxal; ANOE: acetone; XYL: xylene; TOL: toluene; HNO2; HNO3; HNO4; OPEN: aromatic fragments; PAR: paraffin carbon -C-; ONIT: organic nitrate; ISOPRD: lumped intermediate species; ANOL: ethanol; CRES: cresol and higher molar weight phenols.

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Figure 1. Summary of observed HONO mixing ratios at noon (black font) and the calculated unknown daytime HONO source (blue font) from field studies.

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Figure 2. Correlation of the unknown daytime HONO source ($P_{unknown}$) (ppb h⁻¹) with **(a)** NO₂ (ppb) and **(b)** NO₂ × J(NO₂) (ppb s⁻¹), based on the field experiment data shown in Fig. 1.

Figure 3. Model domains used in this study. Domain 2 covers the Beijing–Tianjin–Hebei (BTH), Yangtze River delta (YRD), and Pearl River delta (PRD) regions.

ACPD

Figure 4. Comparison of simulated and observed hourly-mean mixing ratios of NO₂ and O₃ in (a) Beijing on 14-28 August 2007 and (b) Guangzhou on 11-23 July 2006.

Figure 5. Comparison of simulated and observed hourly-mean HONO mixing ratios at the Peking University site in (a) Beijing on 17–20 August 2007 (Spataro et al., 2013) and (b) the Backgarden site in Guangzhou on 11–25 July 2006 (X. Li et al., 2012).

Figure 6. Comparison of simulated and observed hourly-mean mixing ratios of OH and HO_2 (molecules cm⁻³) at the Backgarden site in Guangzhou in July 2006 (Lu et al., 2012).

Figure 7. Simulated unknown daytime HONO source (ppbh⁻¹) in the **(a)** BTH, **(b)** YRD, and **(c)** PRD regions in August 2007 (BJ, Beijing; TJ, Tianjin; SJZ, Shijiazhuang; SH, Shanghai; NJ, Nanjing; HZ, Hangzhou; GZ, Guangzhou; ZH, Zhuhai; SZ, Shenzhen).

Figure 8. Production [P(HONO)] and loss [L(HONO)] rates of HONO for cases *R* (dashed lines) and R_p (solid lines) in (a), (b) Beijing, (c), (d) Shanghai, and (e), (f) Guangzhou in August 2007.

Figure 9. Daytime (06:00–18:00 LST) percentage enhancements of (a) OH, (b) HO₂, and (c) RO₂ due to the unknown daytime HONO source (case R_p – case R_{wop}) in the coastal regions of China in August 2007.

Figure 11. Averaged production [P(OH)] and loss [L(OH)] rates of OH for case R_p in **(a)**, **(b)** Beijing, **(c)**, **(d)** Shanghai, and **(e)**, **(f)** Guangzhou in August 2007.

Figure 12. Daytime (06:00–18:00 LST) average budgets of OH, HO₂ and RO₂ radicals (reaction rates, ppb h^{-1}) for cases **(a)** *R* and **(b)** *R*_p in Beijing/Shanghai/Guangzhou in August 2007.